Surgical masks —
Requirements and
test methods

The European Standard EN 14683:2005 has the status of a
British Standard
National foreword

This British Standard is the official English language version of EN 14683:2005.

The UK participation in its preparation was entrusted by Technical Committee CH/205, Non-active medical devices, to Subcommittee CH/205/1, Medical textiles, which has the responsibility to:

— aid enquirers to understand the text;
— present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep UK interests informed;
— monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the BSI Catalogue under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the BSI Electronic Catalogue or of British Standards Online.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 16, an inside back cover and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

Amendments issued since publication

<table>
<thead>
<tr>
<th>Amd. No.</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© BSI 16 January 2006

ISBN 0 580 46961 1
Surgical masks - Requirements and test methods

Masques chirurgicaux - Exigences et méthodes d'essai

Chirurgische Masken - Anforderungen und Prüfverfahren

This European Standard was approved by CEN on 19 September 2005.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1 Scope</td>
<td>5</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>5</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>5</td>
</tr>
<tr>
<td>4 Classification</td>
<td>6</td>
</tr>
<tr>
<td>5 Requirements</td>
<td>6</td>
</tr>
<tr>
<td>6 Testing requirements</td>
<td>7</td>
</tr>
<tr>
<td>7 Labelling and information to be supplied</td>
<td>7</td>
</tr>
<tr>
<td>Annex A (informative) Information for users</td>
<td>8</td>
</tr>
<tr>
<td>Annex B (normative) Method for in vitro determination of bacterial filtration efficiency (BFE)</td>
<td>9</td>
</tr>
<tr>
<td>Annex C (normative) Method for determination of breathability (differential pressure)</td>
<td>13</td>
</tr>
<tr>
<td>Annex ZA (informative) Clauses of this European Standard addressing essential requirements or other provisions of EU Directive 93/42 concerning medical devices</td>
<td>15</td>
</tr>
<tr>
<td>Bibliography</td>
<td>16</td>
</tr>
</tbody>
</table>
Foreword

This European Standard (EN 14683:2005) has been prepared by Technical Committee CEN/TC 205 “Non-active medical devices”, the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2006, and conflicting national standards shall be withdrawn at the latest by May 2006.

This European Standard has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this European Standard.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Introduction

The transmission of infective agents during surgical procedures in operating theatres and other medical settings can occur in several ways. Sources are e.g. noses and mouths of the surgical team. The main intended use of surgical masks is to protect the patients from infective agents from the noses and mouths of the staff and, in certain situations, additionally to protect the wearer against splashes of potentially contaminated liquids.
1 Scope

This European Standard specifies construction and performance requirements, and test methods for surgical masks intended to limit the transmission of infective agents from staff to patients and (in certain situations vice-versa) during surgical procedures in operating theatres and other medical settings with similar requirements.

This European Standard is not applicable to masks intended exclusively for the personal protection of staff.

NOTE 1 Standards for masks for use as respiratory personal protective equipment are available.

NOTE 2 Annex A provides information for the users of surgical masks.

2 Normative references

The following referenced documents are indispensable for the application of this European Standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ASTM F1862, Standard Test Method for Resistance of Medical Face Masks to Penetration by Synthetic Blood (Horizontal Projection of Fixed Volume at a Known Velocity)

3 Terms and definitions

For the purposes of this European Standard, the following terms and definitions apply.

3.1 surgical mask
medical device covering the mouth, nose and chin providing a barrier to minimise the direct transmission of infective agents between staff and patient

NOTE Transmission of blood-borne agents from patients to staff may occur via splashes.

3.2 bacterial filtration efficiency (BFE)
effectiveness of a surgical mask in capturing aerosol droplets containing bacteria

3.3 differential pressure
pressure drop across a surgical mask under specific conditions of air flow, temperature and humidity

NOTE The differential pressure is an indicator of the "breathability" of the mask.

3.4 colony forming unit (cfu)
particle containing one or more bacterial cells which gives rise to a single bacterial colony on a culture plate

3.5 infective agent
micro-organism that has been shown to cause surgical wound infections or that might cause infection in the patient or in members of the surgical team
3.6 surgical procedure
surgical intervention penetrating skin or mucosa, performed by a surgical team under controlled environmental conditions

3.7 aerosol
suspension of solid, liquid, or solid and liquid, particles in a gaseous medium, the particles having a negligible falling velocity (see EN 132)

NOTE This velocity is generally considered to be less than 0.25 m/s.

4 Classification

Surgical masks specified in this European Standard are classified into two types according to bacterial filtration efficiency and differential pressure and each type is further divided according to whether or not the masks are splash resistant.

5 Requirements

5.1 General

5.1.1 Materials and construction

The surgical mask shall not disintegrate, split or tear during intended use.

5.1.2 Design

The surgical mask shall have a means by which it can be fitted closely over the nose, mouth and chin of the wearer and which ensures that the mask fits closely at the sides.

5.2 Performance requirements

5.2.1 Bacterial filtration efficiency (BFE)

When tested in accordance with Annex B, the bacterial filtration efficiency (BFE) of the surgical mask shall conform to the minimum value given for the relevant type in Table 1.

5.2.2 Breathability

When tested in accordance with Annex C, the differential pressure of the surgical mask shall conform to the value given for the relevant type in Table 1.

NOTE 1 If the use of a respiratory protective device as surgical mask is required in an operating theatre and/or other medical settings, it might not fulfil the performance requirements with regard to differential pressure as defined in this European Standard. In such case, the device should fulfil the requirement as specified in the relevant PPE standard(s).

NOTE 2 Differential Pressure is expressed in Pa. 1 Pa equals 9.806 times pressure expressed in mm water.

5.2.3 Splash resistance

When tested in accordance with ASTM F1862, the resistance of the surgical mask to penetration of splashes of liquid shall conform to the minimum value given for the relevant type in Table 1.
Table 1 — Performance requirements for surgical masks

<table>
<thead>
<tr>
<th>Test</th>
<th>Type I</th>
<th>Type IR</th>
<th>Type II</th>
<th>Type IIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial filtration efficiency (BFE), (%)</td>
<td>≥ 95</td>
<td>≥ 95</td>
<td>≥ 98</td>
<td>≥ 98</td>
</tr>
<tr>
<td>Differential pressure (Pa)</td>
<td>< 29,4</td>
<td>< 49,0</td>
<td>< 29,4</td>
<td>< 49,0</td>
</tr>
<tr>
<td>Splash resistance pressure (mm Hg)</td>
<td>Not required</td>
<td>≥ 120</td>
<td>Not required</td>
<td>≥ 120</td>
</tr>
</tbody>
</table>

NOTE: Type IR and Type IIR are splash resistant types.

6 Testing requirements

All tests shall be carried out on finished products or samples cut from finished products, if appropriate in their sterile state.

Unless otherwise specified for a particular test, samples for testing shall be conditioned at (20 ± 2) °C and (65 ± 2) % relative humidity for the time required to bring them into equilibrium with atmosphere.

7 Labelling and information to be supplied

Annex 1 § 13 of the Medical Devices Directive (93/42/EEC) specifies the information that has to be specified on the packaging in which the surgical mask is supplied.

The following information shall be supplied in addition:

a) number of this European Standard;

b) type of mask (as indicated in Table 1).
Annex A
(informative)

Information for users

When breathing, speaking, coughing, sneezing etc. one releases smaller or larger amounts of droplets of secretions from the mucous membranes in the mouth and nose. Those droplets quickly evaporate and leave nuclei suspended in the air. The majority of the nuclei are between 0,5 µm and 12 µm in diameter and especially the larger droplets can contain micro-organisms from the source site. Nuclei can subsequently spread through the air to a susceptible site such as an open operating wound or sterile equipment.

The surgical masks intended to be used in operating theatres and health care settings with similar requirements are designed to protect the working environment and not the wearer. When the primary intention is to protect the wearer from infection, the use of respiratory protective devices should be considered.

A special case, also covered by the European Medical Devices legislation, is that in which the wearer wishes to protect him/herself against splashes of potentially contaminated fluids. For this application this European Standard specifies performance requirements and gives a test method for a special class of surgical masks offering protection against splashes.

The degree of protection offered by a mask depends on a number of factors such as the filtration capacity and efficiency of the material and the fit of the mask on the wearer’s face. Different designs are suited for different applications and the careful choice of mask is therefore important in order to achieve the desired result.

The filtration capacity of mask materials can vary depending on the filter media. The fit of masks varies considerably from those which are held in place by ear loops fastened behind the wearer’s ears to those with tie bands around the head and a nose clamp that can be shaped to the wearer’s nose. The effect of a very good or less good fit can be tested in vivo whereas the filtration efficiency may be reproducibly tested in vitro.

The considerable variations in results when masks are tested in vivo results in the need for large groups of test subjects and observations. It is thus usual to characterize mask performance using in vitro tests of the material from which the mask is made. It is, however, important to consider the fit of the mask carefully when a mask for a certain application is chosen. Users should request such information from their suppliers.

A further factor to be considered is the capacity of the mask to absorb moisture from the exhaled air and thereby to maintain its performance over a longer period of time. The more advanced designs easily maintain their performance throughout even very long operations whereas the less advanced ones are intended only for short procedures.

The contamination risk resulting from hand contact with a used mask means that it is essential that the mask is taken off and disposed of when no longer worn over nose and mouth. When there is a further need for protection then a new mask should be put on. Touching a used face mask or putting on a new one should always be followed by a full hand disinfection procedure and a used mask should always be disposed of when no longer needed or between two procedures.

In summary, to use an appropriate mask is an effective means to protect the working environment from droplet contamination from nose and throat during health care procedures. Masks with very different performance are, however, available. Therefore such factors as infection risk and mask fit should be carefully considered when choosing a mask.
Annex B
(normative)

Method for in vitro determination of bacterial filtration efficiency (BFE)

WARNING — *Staphylococcus aureus* is a pathogen. The relevant national provisions by law and hygienic instructions when dealing with pathogens shall be complied with.

B.1 Principle

A specimen of the mask material is clamped between a six-stage cascade impactor and an aerosol chamber. An aerosol of *Staphylococcus aureus* is introduced into the aerosol chamber and drawn through the mask material and the impactor under vacuum. The bacterial filtration efficiency of the mask is given by the number of colony forming units passing through the surgical mask material expressed as a percentage of the number of colony forming units present in the challenge aerosol.

B.2 Reagents and materials

B.2.1 Tryptic soy agar.

B.2.2 Tryptic soy broth.

B.2.3 Peptone water.

B.2.4 Culture of *Staphylococcus aureus* ATCC 209, growing on tryptic soy agar slants.

NOTE In case strain ATCC 209 is not available, strain ATCC 6538 may be used.

B.3 Apparatus

B.3.1 Six stage cascade impactor.

B.3.2 Nebulizer, capable of delivering particles with a mean size of 3.0 µm ± 0.3 µm.

B.3.3 Aerosol chamber, glass, 600 mm long and 80 mm in diameter.

B.3.4 Flow meters, capable of measuring a flow rate of 28.3 l/min

B.3.5 Pressure gauge, capable of measuring a pressure of 35 kPa to an accuracy of ± 1 kPa.

B.3.6 Erlenmeyer flasks, 250 ml and 500 ml capacity.

B.3.7 Peristaltic or syringe pump, capable of delivering 0.01 ml/min.

B.3.8 Vacuum pump, capable of maintaining a flow rate of 57 l/min.
B.4 Test specimens

Test specimens shall be cut from complete masks. Each specimen shall be minimum 100 mm by 100 mm and shall include all layers of the mask in the order in which they are placed in the complete mask. The number of specimens that shall be tested is minimum 5 (five), but can be greater and shall be increased if necessary to allow for an AQL of 4 %. All specimens tested shall be taken from areas representative from the mask to incorporate all / any variation in construction.

If required, condition the test specimens according to ISO 139. Otherwise, conditioning and testing can be carried out at normal room temperature. The method for conditioning shall be recorded in the test report.

B.5 Preparation of bacterial challenge

Staphylococcus aureus (B.2.4) shall be inoculated into 30 ml tryptic soy broth in an Erlenmeyer flask and incubated with mild shaking at a temperature of (37 ± 2) °C for (24 ± 2) h. The culture shall then be diluted in peptone water to give a concentration of approximately 5×10^5 cfu/ml.

The bacterial challenge shall be maintained at (2 200 ± 500) cfu per test. The bacterial challenge shall be determined for each day of testing on the basis of the positive control plates (see B.6.3) and the dilution of the challenge suspension adjusted accordingly. The mean particle size in the bacterial challenge shall be maintained at (3,0 ± 0,3) µm (see B.6.9).

B.6 Procedure

B.6.1 Assemble the apparatus in accordance with the flow chart shown in Figure B.1.

B.6.2 Deliver the bacterial challenge to the nebulizer using the peristaltic or syringe pump.

B.6.3 Perform a positive control run without a test specimen. Initiate the bacterial challenge by turning on the vacuum pump and adjust the flow rate through the cascade impactor to 28,3 l/min. Deliver the bacterial challenge for 1 min. Maintain the airflow through the impactor for 2 min. Then remove the plates from the impactor. Ensure that each plate is numbered to indicate its position in the impactor.

B.6.4 Place fresh plates in the impactor, fix a test specimen in place and repeat the above procedure.

B.6.5 Repeat this procedure for each test specimen.

B.6.6 After the last test specimen has been tested, perform a further positive control run.

B.6.7 Perform a negative control run by passing air, without addition of the bacterial challenge, through the cascade impactor for 2 min.

B.6.8 Incubate all the plates at (37 ± 2) °C for (48 ± 4) h.

B.6.9 For each run, count the number of colonies on each plate and add up the counts to give the total number of cfu collected by the impactor. For the two positive control runs take the mean of the two totals. From the positive control plates calculate the mean particle size of the bacterial challenge aerosol in accordance with the instructions of the cascade impactor manufacturer.
B.7 Calculation of bacterial filtration efficiency

For each test specimen calculate the bacterial filtration efficiency B, as a percentage, using the following equation:

$$B = \frac{(C - T)}{C} \times 100$$

where

- C is the mean of the total plate counts for the two positive control runs;
- T is the total plate count for the test specimen.

B.8 Test report

The following information shall be given in the test report;

a) number and date of this European Standard;
b) dimensions of the test specimens and the size of the area tested;
c) which side of the test specimen was facing towards the challenge aerosol;
d) flow rate during testing;
e) mean of the total plate counts of the two positive controls;
f) mean plate count of the negative controls;
g) bacterial filtration efficiency for each test specimen.

Figure B.1 — Principle of BFE Test Apparatus
Key
1 Drive mechanism
2 Bacterial suspension
3 Nebulizer
4 Filter
5 Aerosol chamber
6 High pressure air source
7 Test material
8 Microbial sampler
9 Outlet to sink
10 Condenser
11 Cold water inlet
12 Calibrated flow meter
13 Compressor (vacuum pump)

Figure B.2 — BFE test apparatus
Annex C
(normative)

Method for determination of breathability (differential pressure)

C.1 Principle

A device which measures the pressure differential required to draw air through a measured surface area at a constant air flow rate is used to measure the air exchange pressure of the surgical mask material, as shown in Figure 2. Water-filled manometers (M1 and M2) are used to measure the pressure differential. A flow meter is used for measurement of the airflow. An electric vacuum pump draws air through the apparatus and a needle valve is used to adjust the airflow rate.

![Diagram of apparatus for measuring air resistance](image)

Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air inlet</td>
</tr>
<tr>
<td>2</td>
<td>Flow meter</td>
</tr>
<tr>
<td>3</td>
<td>Manometer M1</td>
</tr>
<tr>
<td>4</td>
<td>Filter material</td>
</tr>
<tr>
<td>5</td>
<td>Manometer M2</td>
</tr>
<tr>
<td>6</td>
<td>Valve</td>
</tr>
<tr>
<td>7</td>
<td>Vacuum pump</td>
</tr>
</tbody>
</table>

Figure C.1 — Apparatus for measuring air resistance
C.2 Apparatus

C.2.1 Flow meter, capable of measuring an airflow of 8 l/min.

C.2.2 Manometers M1 and M2.

C.2.3 Electric vacuum pump.

C.2.4 Valve.

C.3 Test specimens

Test specimens are complete masks or shall be cut from masks. Each specimen shall be able to provide 5 different circular test areas of 2,5 cm in diameter. The number of specimens that shall be tested is 5 (five).

C.4 Procedure

C.4.1 The test specimen is placed across the 2,5 cm diameter orifice (total area 4,9 cm2) and clamped into place so that the tested area of the specimen will be in line and across the flow of air.

C.4.2 The pump is started and the flow of air adjusted to 8 l/min.

C.4.3 The manometers M1 and M2 are read and recorded.

C.4.4 The procedure described in steps C.4.1 through C.4.3 is carried out on five different areas of the mask and the readings averaged.

C.5 Calculation of differential pressure

For each test specimen calculate the differential pressure ΔP as follows:

$\Delta P = (X_{m1} - X_{m2})/4.9$

where

- X_{m1} is mm water pressure, manometer M1, mean of five test areas, low pressure side of the material;
- X_{m2} is mm water pressure, manometer M2, mean of five test areas, high pressure side of the material;
- 4.9 is the cm2 area of the test material;
- ΔP is the pressure differential per cm2 of test material expressed as mm of water.

C.6 Test report

The following information shall be given in the test report:

a) number and date of this European Standard;

b) flow rate during testing;

c) differential pressure for each test specimen.
Annex ZA
(informative)

Clauses of this European Standard addressing essential requirements or other provisions of EU Directive 93/42 concerning medical devices.

This European standard has been prepared under a mandate given to CEN by the European Commission to provide a means of conforming to the essential requirements of New Approach EU Directive 93/42/EEC Medical devices.

Once this standard is cited in the Official Journal of the European Communities under that Directive and has been implemented as a national standard in at least one Member State, compliance with the clauses of this standard given in Table ZA.1 confers, within the limits of the scope of this standard, a presumption of conformity with the corresponding Essential Requirements of that Directive and associated EFTA regulations.

Table ZA.1 — Correspondence between this European Standard and EU Directive 93/42/EEC Medical devices

<table>
<thead>
<tr>
<th>Clause/subclause of this European Standard</th>
<th>Corresponding Essential Requirement of Directive 93/42/EEC</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>1, 2, 3, 4, 7.1, 8.1</td>
<td></td>
</tr>
<tr>
<td>5.1.2</td>
<td>1, 2, 3, 7.1, 8.1</td>
<td></td>
</tr>
<tr>
<td>5.2.1</td>
<td>3, 8.1</td>
<td></td>
</tr>
<tr>
<td>5.2.2</td>
<td>3, 8.1, 9.2</td>
<td></td>
</tr>
<tr>
<td>5.2.3</td>
<td>3, 8.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3, 8.1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

WARNING — Other requirements and other EU Directives may be applicable to the product(s) falling within the scope of this standard.
Bibliography

[3] EN 1041, *Information supplied by the manufacturer with medical devices*

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover.

Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001.

Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre.

Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.

Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager.

Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553.

Email: copyright@bsi-global.com.